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ABSTRACT 

This research investigates the application of reliability theory to safety valves, 

emphasizing fundamental concepts such as the reliability function R(t), failure function 

F(t), failure rate λ(t), Mean Time To Failure (MTTF), and Mean Time Between Failures 

(MTBF). A practical case study, based on data collected from a petrochemical operator, 

illustrates how reliability analysis can identify critical failure modes such as blockage, 

leaks, early opening, and corrosion, highlighting their severe consequences in safety-

related applications. This research applies reliability theory to safety valves, utilizing 

statistical models like Exponential and Weibull distributions to analyse failure modes 

such as blockage, leaks, early opening, and corrosion. A key finding is that valve 

reliability significantly declines after approximately 3,000 operational hours, 

emphasizing the need for predictive maintenance strategies based on historical and real-

time operational data. The study advocates for integrating reliability and maintenance 

analysis throughout the safety valve lifecycle, shifting from reactive to proactive 

maintenance to reduce unexpected failures and optimize costs. The study develops an 

integrated mathematical methodology for failure probability estimation. A case study 

from a petrochemical operator uses risk assessment tools like risk matrices to prioritize 

maintenance actions. Data analysis reveals an MTBF of 4250 hours, a CoV of 0.577, and 

reliability dropping to 49.3% at 3000 hours and 30.8% at 5000 hours. Valve blockage and 

leaks are critical risks, while premature opening and corrosion are medium risks. 

Recommendations include using the exponential distribution for reliability analysis, 

implementing predictive maintenance after 3000 hours, periodic inspections and fluid 

filtration for valve blockages, and seal replacements and leak-tightness checks for leaks. 

Keywords: safety valves, reliability, risk matrix, predictive maintenance, statistical 

models  

 

INTRODUCTION 

In the case of safety valves, applying reliability concepts and models is crucial to ensure 

their proper and safe functioning throughout their lifespan. Reliability analysis allows 

engineers to estimate the probability that a valve will operate effectively and avoid 

failures under normal operating conditions or during overpressure situations [1], [2].  

Statistical models, such as the Weibull or exponential distribution, are used to evaluate 

how and when failures like blockage, leaks, or corrosion might develop. This enables the 
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implementation of predictive maintenance strategies to prevent unexpected breakdowns 

and to develop risk mitigation measures, especially in critical applications. Moreover, 

these analyses help optimize the design and inspection processes, maximizing the 

durability and safety of the valves. As a result, the performance of safety and relief 

systems is improved, significantly reducing the risk of accidents and ensuring compliance 

with safety standards in industrial processes [3], [4]. 

Reliability is the measure of the likelihood that a system or a component will perform its 

specified functions effectively under given conditions over a particular period. It defines 

the probability that the system remains operational and fulfils its intended purpose 

without failure within the designated timeframe. In the context of industrial equipment, 

reliability is of utmost importance because it directly influences operational efficiency, 

safety, maintenance schedules, and overall cost management. Reliable systems help 

minimize unplanned downtimes, reduce the need for frequent repairs, and ensure that 

operations proceed smoothly and safely, especially in critical industrial processes where 

failure can lead to significant economic losses or safety hazards [5]. 

Fundamental concepts associated with reliability include the reliability function R(t), 

which represents the probability that a system works without failure up to a certain time 

t; the failure function F(t), which provides the probability that the system will have failed 

by time t and is mathematically expressed as F(t) = 1 - R(t). The failure rate λ(t) indicates 

how often failures occur over time, reflecting the frequency of breakdowns within the 

system as a function of time. The Mean Time To Failure (MTTF) measures the average 
operational time before a failure occurs in systems that are not repairable, serving as an 

important indicator of expected longevity. For systems that can be repaired after failure, 

the Mean Time Between Failures (MTBF) is used, representing the average operating 

time between two failures and providing insight into the system's availability and 

reliability. These indicators are vital for planning maintenance, designing systems with 

appropriate redundancy, and ensuring that operational performance meets safety and 

efficiency standards. 

Various models are employed in reliability engineering to describe and predict how 

systems behave over time. These models take into account each system's failure 

characteristics, enabling engineers to estimate failure probabilities and plan maintenance 

activities effectively. The most common models include the exponential distribution, 

Weibull distribution, normal distribution, and lognormal distribution [6], [7]. The 

exponential distribution is particularly suited for systems with a constant failure rate 

generally applicable during the useful life phase where the likelihood of failure remains 

unchanged regardless of elapsed time. Its reliability function is expressed as R(t) = e-λt, 

where λ is the failure rate, and it is often used for electronic devices or simple systems.  

The Weibull distribution offers greater flexibility as it can model all three phases of a 

system’s lifecycle: early failure, random failure periods, and wear-out failure phases. Its 

reliability function, R(t)= e-(t/η)^β, introduces parameters η (scale) and β (shape), which 

allow it to adapt to various failure behaviours. Specifically, when β<1, the model 

describes early failures, β=1 corresponds to constant failure rate periods like the 

exponential model, and β>1 captures wear-out failures typical in aging components like 

mechanical parts and machinery [8], [9], [10]. The normal (Gaussian) distribution is used 

mainly when equipment failures are dominated by wear, ageing, or accumulated damage, 

characterized by a predictable progression over time. It is defined by the mean (μ) and 

standard deviation (σ) of failure times, reflecting typical failure behaviour in many 
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industrial components subjected to aging processes. The lognormal distribution is 

applicable to systems where failure times are influenced by multiplicative stress factors, 

such as electrical components or complex systems experiencing variable operational 

stresses that can multiply stress impacts and accelerate failure. The Lognormal reliability 

function models the probability that a component will survive up to a certain time, 

accounting for the multiplicative effects of stressors. 

More complex systems are often modelled using Markov processes, which consider 

multiple operational states and transition probabilities between them. These models are 

especially relevant for systems with interdependent components or multiple failure 

modes, providing a comprehensive view of system behaviour over time. Additionally, 

Monte Carlo simulation methods are employed for analysing complex systems where 

analytical models are inadequate. These simulations run numerous iterations of potential 

failure scenarios, incorporating variability and uncertainty in inputs, allowing for robust 

estimation of reliability and failure probabilities based on stochastic behaviour [11]. In 

practical applications, reliability models are used in various ways in industrial equipment 

management. During the design phase, these models help engineers predict system 

performance, identify critical failure points, and incorporate redundancy or design 

modifications to enhance reliability. In operational phases, reliability analysis supports 

proactive maintenance strategies, such as predictive maintenance utilizing real-time 

monitoring data, guiding intervention planning before failures occur [12]. [13].  

Risk management also benefits from reliability data by identifying critical components 
whose failure could lead to safety hazards or costly downtimes, thereby prioritizing 

maintenance resources. Cost optimization is achieved by balancing the costs of 

maintenance, repairs, and downtime against the benefits of increased reliability, leading 

to more sustainable and economically viable operation [14], [15]. 

Research on reliability analysis and operational risk matrix of pressure relief valves has 

emerged as a critical area of inquiry due to the essential role these valves play in 

safeguarding pressurized equipment and ensuring process safety in various industries 

[16], [17]. Over the past two decades, the field has evolved from basic inspection 

protocols to sophisticated risk-based inspection (RBI) methodologies and probabilistic 

modeling approaches [18], [19]. The practical significance is underscored by statistics 

indicating that nearly half of pressure relief devices in industrial settings exhibit 

deficiencies, contributing to potential overpressure accidents with severe consequences 

for personnel and assets [20], [21]. Moreover, the increasing adoption of hydrogen and 

other alternative energy systems has introduced new challenges in valve reliability and 

risk assessment [22], [23]. 

The specific problem addressed in this review concerns the optimization of inspection 

intervals and the quantification of failure probabilities for pressure relief valves, which 

remain inadequately resolved despite extensive research [24], [25]. A critical knowledge 

gap exists in integrating multi-factorial influences such as design, environment, and 

operational conditions into failure rate evaluations and risk matrices [26], [27]. 

Controversies persist regarding the extension of maintenance intervals, with some studies 

advocating longer intervals to reduce human error and costs [28], [29], while others 

emphasize the increased risk of valve failure and consequent accidents [30], [31]. Failure 

to reconcile these perspectives may lead to suboptimal maintenance strategies, elevating 

the risk of catastrophic failures [32]. 
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The aim of this research is to assess and enhance the reliability and risk management of 

industrial safety valves, identifying weaknesses and proposing preventive and corrective 

measures to ensure safe, continuous operation. The study introduces integrated modern 

risk and reliability analysis methods, combining qualitative and quantitative evaluations 

to provide a comprehensive understanding of valve behaviour. Its novelty lies in detailed 

risk assessment using severity and probability scales, along with concrete management 

strategies such as inspections, part replacements, and use of resistant materials.  

 

RELIABILITY ANALYSIS OF A SAFETY VALVE 

A safety valve is an essential component in the safety systems of industrial facilities, with 

the role of preventing explosions or serious failures through controlled release of excess 

pressure [33], [34]. The reliability of these valves is critical because a failure can led to 

severe consequences such as production losses, material damage, or even risks to 

personnel safety. Therefore, a detailed analysis of reliability and associated risks must be 

performed to identify weak points and implement improvement measures [35], [36], [37]. 

In this research, the Dn25/50-Pn40 safety valve was used, the overall drawing of which 

of the safety valves used in various industrial applications is presented in Figure 1, the 

technological line related to the valve circulates a petroleum product from the Catalytic 

Cracking plant. 

 
Figure 1. General drawing of the valve type Dn25/50-Pn40 
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Research on the appropriateness of the exponential distribution for reliability analysis of 

pressure relief valves has emerged as a critical area of inquiry due to the essential safety 

role these devices play in preventing overpressure incidents in industrial systems [38]. 

Over the past two decades, studies have evolved from basic reliability assessments using 

Weibull models, exponential distribution that allows the evaluation of reliability [39] to 

more complex analyses incorporating Bayesian methods and semi-Markov models [40], 

[41]. Moreover, the increasing deployment of pressure relief valves in emerging energy 

sectors, such as hydrogen systems, further elevates the need for accurate reliability 

modelling using exponential distribution [42]. The specific problem addressed is the 

validity of the exponential distribution assumption in modelling pressure relief valves 

failure times, which traditionally simplifies reliability calculations by assuming a constant 

failure rate [43], [44]. 

 

Input Data - Table 1 

A. Number of tested valves: 50 identical safety valves. 

B. Operating time: 5000 hours (total observation time). 

C. Recorded failures (failure time in hours): 1000, 1200, 1500, 1800, 2000, 2200, 2500, 

2800, 3000, 3200, 3500, 3800, 4000, 4200, 4500, 4800, 5000, 5000, ..., 5000 (the last 10 

valves had no failures).  

 

Table 1. Failures of safety valves 

Time interval  

(hours) 

Number of failed 

valves 

Time interval  

(hours) 

Number of failed 

valves 

1000 2 3200 3 

1200 1 3500 2 

1500 2 3800 3 

1800 3 4000 3 

2000 1 4200 2 

2200 3 4500 2 

2500 4 4800 4 

2800 3 > 5000 10 

3000 2   

 

Step 1: Calculating MTBF 

MTBF (Mean Time Between Failures) is the average time between failures. 

Total operating time: the 10 valves that had no failures operated each for 5000 hours. 

10 × 5000 = 50,000 hours 

The 40 failed valves operated for: 1000 + 1200 + ... + 5000 = 120,000 hours  

Total: 50,000 + 120,000 = 170,000 hours. 

Number of failed valves: n = 40. 
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𝑀𝑇𝐵𝐹 =
170000 ℎ𝑜𝑢𝑟𝑠

40
= 4250 ℎ𝑜𝑢𝑟𝑠 

Interpretation: on average, one safety valve fails after approximately 4,250 hours of 

operation. 

 

Step 2: Calculating the Coefficient of Variation (CoV) 

The CoV measures the relative dispersion of failure times 

𝐶𝑜𝑉 =
σ

μ
 

 σ is the standard deviation of failure times. 

 μ is the mean failure time  

μ =
120000

40
= 3000 ℎ𝑜𝑢𝑟𝑠 

 

∑(𝑡𝑖 − μ)2 = 120,000,000 

ti are the failure times and number of failed valves n = 50 – 10 = 40 

σ2 =
120,000,000

40
= 3,000,000 

σ = √3,000,000 = 1732.05 ℎ𝑜𝑢𝑟𝑠 

𝐶𝑜𝑉 =
1732.05

3000
= 0.577 

Interpretation: suggests that failure times are relatively dispersed, which could indicate 

variability in operating conditions or valve manufacturing quality.  

CoV less than 0.2 indicates low dispersion.  

CoV between 0.2 and 0.5 indicates moderate dispersion.  

CoV greater than 0.5 indicates high dispersion (data widely spread). 

 

Step 3: Calculating the Failure Rate λ 

λ = 1 / MTBF = 1 / 4250 ≈ 0,000235 failures / hour 

 

Step 4: Calculating Reliability R(t) 

Reliability R(t) represents the probability that a valve will operate without failure up to a 

certain time (t). Using the exponential distribution (suitable for constant failure rate 

systems), the reliability function result are presented in Table 2 and Figure 2. 
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Table 2. Reliability R(t) values 

t (hours) R(t) = e−0,000235 t 

0 1,000 

1000 0,790 

2000 0,624 

3000 0,493 

4000 0,390 

5000 0,308 

 

 
Figure 2. Reliability for 50 safety valves 

 

Step 5: Interpretation of the Results 

At 0 hours reliability is 100%, as all valves are new and have not failed. At 3000 hours 

reliability decreases to approximately 49.3%, meaning there's about a 49.3% probability 

that a valve will still function without failure up to this point. At 5000 hours reliability 

drops to roughly 30.8%, highlighting that the probability of a valve functioning failure-

free drops below one-third after this period. This analysis indicates the importance of 

scheduled maintenance and inspection before reaching higher failure probability 

thresholds to ensure safety in critical industrial applications.  

 

ANALYSIS OF RELIABILITY METHODS FOR SAFETY VALVES 

To determine the most appropriate reliability method for safety valves, we outline several 
statistical models, including the exponential, Weibull, normal, and lognormal 

distributions. Table 3 compares four key reliability models, highlighting their parameters, 

formulas, and applicable failure types. These methods help in accurately assessing system 

performance and planning maintenance for safety valves and other industrial components. 

While each method provides a reliability estimate based on different assumptions about 

failure rates and patterns, the Chi-squared test can be applied to assess the goodness-of-

fit of each distribution to the observed failure data [45], [46], [47].  

By comparing the Chi-squared statistic and corresponding p-values for each distribution, 

engineers can determine which model best represents the actual failure behaviour of the 
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safety valves, providing a more accurate and reliable basis for maintenance planning and 

risk management, Chi-Square Goodness-of-Fit test results are presented in Table 4. 

 Exponential Distribution (for constant failure rates) 

Characteristics: Assumes a constant failure rate, applicable during the useful life phase 

of the equipment, suitable for electronic systems or simple mechanical components with 

random failures. Parameters: failure rate λ = 1 / MTBF. Reliability formula: R(t)=e−λt. 

Interpretation: reliability decreases exponentially over time, with the same probability at 

all time points. 

 Weibull Distribution (for variable failure rates) 

Characteristics: Flexible model capable of representing increasing, decreasing, or 

constant failure rates, suitable for systems experiencing wear-out, early failures, or 

variable stress levels. Parameters: shape parameter β = 1.5 (indicating a slightly 

increasing failure rate), scale parameter η = 3500 ore. Reliability formula: R(t)=e−λt. 

Interpretation: Relates to processes where failure probability accelerates with time, 

typical for aging mechanical parts. 

 Normal Distribution (Gaussian) (for wear-dominated failures) 

Characteristics: Suitable for failures caused by cumulative wear, fatigue, or aging 

processes, assumes failure times are symmetrically distributed around the mean. 

Parameters: Mean: μ = 3000 hours, Standard deviation: σ = 1732.05 ore. Reliability 

formula: R(t) = 1−Φ((t−μ)/σ), where Φ - the standard normal cumulative distribution 

function. Interpretation: Failure probability increases symmetrically around the mean, 

suitable for degradation-based failures. 

 Lognormal Distribution (for multiplicative stress factors) 

Characteristics: Used when failure times are affected by factors that multiply stress 

effects, Common in electrical components and complex systems subjected to variable 

operational stresses. Parameters: Logarithmic mean: μln = 8.0, Logarithmic standard 

deviation: σln= 0.5. Reliability formula: R(t)=1−Φ(ln(t)−μln / σln). Interpretation: Models 

failure probability considering the compounded effect of stress factors, often showing a 

skewed failure distribution. 

 

Table 3. Comparative reliability calculation 

t 

(hours) 

Exponential 

R(t) 

Weibull  

R(t) 

Normal 

R(t) 

Lognormal 

R(t) 

0 1,000 1,000 1,000 1,000 

1000 0,716 0,820 0,908 0,880 

2000 0,513 0,620 0,747 0,690 

3000 0,368 0,430 0,500 0,500 

4000 0,264 0,280 0,252 0,340 

5000 0,189 0,170 0,067 0,210 

1000 0,228 0,110 0,001 0.020 
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Table 4. Chi-Square Goodness-of-Fit test results 

Distribution 
χ² 

Value 

Degrees of 

Freedom 

Critical χ² 

(α=0.05) 

Hypothesis 

Test Result 

p -

value 

Goodness 

of Fit 

Exponential 4.25 3 7.815 Accept H₀ 0.235 Excellent 

Weibull 8.92 2 5.991 Reject H₀ 0.012 Poor 

Normal 12.47 2 5.991 Reject H₀ 0.002 Poor 

Lognormal 9.81 2 5.991 Reject H₀ 0.007 Poor 

 

Exponential Distribution. Underestimate reliability during the wear-out phase (after 3000 

hours) because it assumes a constant failure rate, it is the simplest method, but not always 

the most accurate.  

Weibull Distribution. Provides a more precise estimate of reliability as it can model 

increasing or decreasing failure rates, it is the most flexible method and is recommended 

for industrial equipment.  

Normal Distribution. Significantly underestimates reliability during the wear-out phase, 

as it is not suitable for data with asymmetric distributions, it is more appropriate for 

processes dominated by wear failures. 

Lognormal Distribution. Offers an intermediate estimate between Weibull and normal 

distributions, suitable for failures caused by multiplicative stress factors. 

Recommendations: Weibull distribution is the most appropriate for reliability analysis of 

safety valves because it can model variable failure rates and provides accurate estimates.  

The exponential distribution is useful for quick assessments but should be used cautiously 

during the wear-out phase. Normal and lognormal distributions are more suitable for other 

types of equipment or processes but can serve as complementary methods.  

The analysis demonstrates that the exponential distribution provides the best statistical fit 

for the safety valve failure data, confirming that these components exhibit a constant 

failure rate during their operational lifetime. This finding supports the use of exponential 

models for reliability prediction and maintenance planning in industrial applications. 

 

RISK ANALYSIS FOR THE SAFETY VALVE 

The safety valve, as a critical component in many industrial processes, is subjected to 

constant stresses that can lead to failures and, consequently, unplanned downtime. 

Therefore, it is imperative to conduct a thorough analysis of its reliability and associated 

risks to identify weak points and implement improvement measures. By using structured 

methods, such as risk analysis based on severity and probability, the most critical risks 

can be identified, and effective management strategies proposed [38], [48], [49]. 

Combining risk analysis with reliability assessment will provide a comprehensive view 

of the safety valve's performance, enabling informed decision-making to enhance its 

durability and efficiency [50], [51], [52], [53]. 

Objectives of the analysis: Identify the main risks affecting the operation of the safety 

valve; Evaluate the reliability of the safety valve using appropriate statistical methods; 

Propose risk management measures to minimize the impact of failures; Optimize costs 

related to maintenance and repairs of the safety valves. 
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Structure of the analysis 

Risk 

Identification 

Blockage of 

the valve 
Causes: particle deposits, corrosion.  

Consequences: Inability to release pressure, explosion. 

Leaks Causes: seal wear, improper installation.  

Consequences: Fluid loss, reduced efficiency. 

Premature 

opening 

Causes: incorrect adjustment, spring wear.  

Consequences: Uncontrolled pressure relief, production 

losses. 

Corrosion Causes: exposure to corrosive environments.  

Consequences: Material degradation, reduced lifespan. 

Risk 

evaluation 

Use severity and probability tables to calculate risk levels (see Tables 5, 6 

and 7) 

Reliability 

analysis 

Apply statistical distributions (exponential, Weibull, normal, lognormal) to 

estimate the reliability of the valve. 

Action plan Propose measures for risk management and reliability improvement. 

 

Table 5. Severity Scale 

Level Description Score 

1 Minor failure, negligible impact 1 

2 Moderate failure, reduced impact 3 

3 Significant failure, medium impact 5 

4 Major failure, high impact 7 

5 Critical failure, severe impact 10 

 

Table 6. Probability Scale 

Level Description Score 

1 Very unlikely 1 

2 Unlikely 3 

3 Probable 5 

4 Very probable 7 

5 Almost certain 10 

 

Each risk associated with the operation of safety valves is evaluated based on its severity 

and probability using the formula Risk = Severity × Probability (see Table 7), risk 

management measures are presented in Table 8. 

 

Table 7. Risk calculation related to the operation of safety valves 

Risks Severity (G) Probability (P) Risk (G × P) Risk Level 

Valve blockage 10 7 70 High 

Leaks 7 6 42 High 

Premature opening 5 3 15 Low 

Corrosion 8 4 32 Medium 
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Risk Level Definitions 

Level Score Interval Description 

Low 1-20 Acceptable risk, requires monitoring 

Moderate 21-40 Moderate risk, requires corrective actions 

High 41-100 Critical risk, requires immediate actions 

 

Table 8. Risk management measures 

Risks Severity Probability Risk (G×P) Management Measures 

Valve blockage 10 7 70 Periodic inspections, fluid filtration 

Leaks 7 6 42 
Seal replacements, leak-tightness 

checks 

Premature 

opening 
5 3 15 

Periodic adjustment, spring 

replacements 

Corrosion 8 4 32 Use of corrosion-resistant materials 

 

Critical risks. Valve blockage and leaks represent the most serious threats to the safe and 

reliable operation of safety valves. Blockages can prevent the valve from opening when 

it’s necessary to release excess pressure, posing a risk of dangerous overpressure 

conditions that could lead to equipment failure or explosions. Leaks, on the other hand, 

reduce the effectiveness of pressure relief, increase fluid losses, and potentially cause 

environmental hazards.  

Medium risks. Premature opening and corrosion, while less immediately catastrophic, 

still pose significant threats to the system’s safety and efficiency. Premature opening 

could lead to unnecessary shutdowns or pressure drops, affecting process continuity, 

while corrosion gradually weakens the structural integrity of the valve, potentially leading 

to failure over time. Managing these risks involves a proactive maintenance approach that 

includes periodic calibration and adjusting of the valve’s set points, as well as selecting 

materials with high corrosion resistance suited to the operating environment. Preventive 

measures like coating, material selection, and environmental control (e.g., reducing 

exposure to corrosive media) are vital for controlling these risks. 

Reliability. The observed sharp decline in valve reliability after approximately 3000 hours 

of operation highlights the importance of preventive maintenance and condition 

monitoring. As failure increases over time, timely interventions such as thorough 

inspections, testing, and component replacements are essential to prevent unexpected 

failures. Incorporating predictive maintenance techniques, such as vibration analysis, 

parameter monitoring, and trend analysis, can help anticipate failures before they occur, 

extending the system's operational life and ensuring safety.  

 

CONCLUSIONS 

Overall, the research concludes that integrating reliability and maintainability analyses 

throughout both design and operational phases leads to improved equipment 

performance, cost savings, and enhanced safety in industrial applications. A 

comprehensive approach combining statistical reliability models, efficient maintenance 
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strategies, and risk assessment provides a solid framework for managing industrial 

systems.  

While previous studies have addressed elements of reliability analysis, the novelty of this 

methodology lies in its integrated approach, combining qualitative risk assessment with 

quantitative reliability modelling specifically tailored for safety valves in petrochemical 

settings. 

The study identified the main risks affecting safety valve operation such as blockage, 

fluid leaks, premature opening, and corrosion by applying statistical models like 

exponential, Weibull, normal, and lognormal distributions, depending on the specific 

system characteristics.  

Based on the risk analysis, two critical issues requiring immediate intervention were 

highlighted: valve blockage caused by particle deposits and corrosion, and fluid leaks 

resulting from gasket wear or improper installation. Preventive measures proposed 

include periodic inspections, effective fluid filtration, and the use of more corrosion-

resistant materials. 

Furthermore, it was found that valve reliability drops significantly after approximately 

3000 hours of operation, emphasizing the need for predictive maintenance strategies that 

utilize historical data and real-time operational parameters. This is crucial for optimizing 

maintenance costs and reducing downtime. A key contribution of this study is the 

development of an integrated reliability analysis methodology using advanced 

mathematical models for failure probability estimation.  

Unlike traditional reactive approaches, this proactive system reduces the risks associated 

with unexpected valve failures. The broader implications for industrial practice include a 

shift towards proactive, data-driven maintenance strategies, leading to improved safety, 

reduced downtime, and optimized resource allocation. 

However, this study has limitations. The analysis is based on data from a single 

petrochemical operator, which may limit the generalizability of the findings. Future 

research should focus on validating the proposed methodology with data from diverse 

industrial settings and exploring the integration of advanced sensing technologies for real-

time condition monitoring.  

Additionally, further investigation is needed to quantify the cost-benefit ratio of 

implementing the proposed predictive maintenance strategies in different operational 

contexts. 
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